

Version Control

The Plan

● Why version control?
● Concepts/Goals of VCS
● Systems

The Plan

● Why version control?
● Concepts/Goals of VCS
● Systems

Why Version Control?

● Sanity!
● Allow many people to collaboratively work
● Roll back changes if they don't work out

– Encourage experimentation

● “What changed?!”
● “When did this break?” (blame)
● Keep code elsewhere (in case of disaster)

The Plan

● Why version control?
● Concepts/Goals of VCS
● Systems

Goals

● Required:
– Keep all previous copies of code

– Give different people different places to
work

● Connect these back together later

● Nice:
– Credit contributors

– Mark “release” versions

Concepts

● Versions
● Branches
● Tagging
● Merging

Concepts

● Versions
– Snapshot of a point in time

● Branches
● Tagging
● Merging

Concepts

● Versions
● Branches

– Personal space to work in

● Tagging
● Merging

Concepts

● Versions
● Branches
● Tagging

– Mark a version (ex: Release-1.0)

● Merging

Concepts

● Versions
● Branches
● Tagging
● Merging

– Mush two branches together

Visualization

http://engineerography.com/files/2009/08/800px-Subversion_project_visualization.svg.png

Systems

● Terminology
● Git
● Subversion

Terminology

● Repository (repo)
● Centralized version control
● Distributed version control

Terminology

● Repository (repo)
● Centralized version control

– All operations hit a central server

● Distributed version control

Terminology

● Repository (repo)
● Centralized version control
● Distributed version control

– Keep a local copy of the repository

– Operations work against this

Warning – Religious Wars
Ahead!

Git – The “Stupid Content
Tracker”

● "I'm an egotistical bastard, and I name all my
projects after myself. First 'Linux', now 'git'."

– Linus Torvalds

● Decentralized VCS
● Tracks by folder

Subversion

● Centralized VCS
● Simpler (most of the time)
● Tracks by file

Ignoring files

● .gitignore
– Put in a line for each file to ignore (you

can use regexps)

– https://github.com/github/gitignore

● svn:ignore
– svn propset svn:ignore secret.txt .

– (this is complicated...)

https://github.com/github/gitignore

Some Dos

● Check in/commit early and often
● Use descriptive commit messages

Some Donts

● Check in binary executeables
– VCSs in general don't know how to handle it

● Check in/push broken code to the master (you'll
owe your team booze)

– Bad etiquette

– Exception: on your own branch

● Check in passwords, local configs, keys
● USE DROPBOX/EMAIL AS A VCS

Getting Repos

● SVN: Talk to CS
● Git: Run locally
● Git: github.com
● Both: ACM!

Comments/Questions/Stories?

Slides online at
http://pressers.name/static/slidesets/ACMVC

S-Oct12.pdf
http://pressers.name/static/slidesets/ACMVC

S-Oct12.odp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

