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Why Version Control?

● Sanity!
● Allow many people to collaboratively work
● Roll back changes if they don't work out

– Encourage experimentation

● “What changed?!”
● “When did this break?” (blame)
● Keep code elsewhere (in case of disaster)
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Goals

● Required:
– Keep all previous copies of code

– Give different people different places to 
work

● Connect these back together later

● Nice:
– Credit contributors

– Mark “release” versions
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Concepts

● Versions
● Branches
● Tagging

– Mark a version (ex: Release-1.0)

● Merging



  

Concepts

● Versions
● Branches
● Tagging
● Merging

– Mush two branches together



  

Visualization

http://engineerography.com/files/2009/08/800px-Subversion_project_visualization.svg.png



  

Systems

● Terminology
● Git
● Subversion
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● Centralized version control

– All operations hit a central server

● Distributed version control



  

Terminology

● Repository (repo)
● Centralized version control
● Distributed version control

– Keep a local copy of the repository

– Operations work against this



  

Warning – Religious Wars 
Ahead!



  

Git – The “Stupid Content 
Tracker”

● "I'm an egotistical bastard, and I name all my 
projects after myself. First 'Linux', now 'git'."

– Linus Torvalds

● Decentralized VCS
● Tracks by folder



  



  



  

Subversion

● Centralized VCS
● Simpler (most of the time)
● Tracks by file



  

Ignoring files

● .gitignore
– Put in a line for each file to ignore (you 

can use regexps)

– https://github.com/github/gitignore

● svn:ignore
– svn propset svn:ignore secret.txt .

– (this is complicated...)

https://github.com/github/gitignore


  

Some Dos

● Check in/commit early and often
● Use descriptive commit messages



  

Some Donts

● Check in binary executeables
– VCSs in general don't know how to handle it

● Check in/push broken code to the master (you'll 
owe your team booze)

– Bad etiquette

– Exception: on your own branch

● Check in passwords, local configs, keys
● USE DROPBOX/EMAIL AS A VCS



  

Getting Repos

● SVN: Talk to CS
● Git: Run locally
● Git: github.com
● Both: ACM!



  

Comments/Questions/Stories?

Slides online at 
http://pressers.name/static/slidesets/ACMVC

S-Oct12.pdf
http://pressers.name/static/slidesets/ACMVC

S-Oct12.odp
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